ABSTRACT

Ultracold atoms in optical lattices have proven to be a versatile model system in which strong correlation effects in a many-body quantum system can be studied [1]. The tunability and control over almost all underlying system parameters makes them rather unique and allows one to switch between different ground states of the underlying many-body quantum system. One of the most prominent effects in this respect is the quantum phase transition (QPT) from a superfluid (SF) to a Mott insulator (MI) that started the field of strong-correlation physics with ultracold gases. First theoretically proposed by Fisher et al. [2], the Bose-Hubbard model (BHM) was introduced into the field of ultracold atoms by Jaksch et al. [3], eventually being realized in subsequent experiments [4-7]. This article focuses on giving a brief summary of the main results achieved in the SF-MI transition with ultracold bosons in optical lattices. A brief introduction into the setup of optical lattices is followed by a discussion of key results such as the coherence properties, the density profiles, transport properties and SF characteristics across the QPT.