ABSTRACT

Lloyd C. L. Hollenberg Centre for Quantum Computer Technology, School of Physics, University of Melbourne, VIC 3010, Australia

Condensed matter physics studies complex systems of interacting particles to understand macroscopic and emergent phenomena of those systems. In general, sample perfection and homogeneity are critical to the observation of most many-body effects. Conversely, quantum optics has conventionally looked at interactions between some of the most perfect and isolated systems available, for example monochromatic optical fields and single atoms. The perfection and control of large ensembles of strongly interacting particles is extending to levels of uniformity never before reached, although often with only global control and readout, while quantum optical techniques are now increasingly allowing the treatment of systems of increasing complexity, but with the added advantage of local control and readout. Coupled cavity systems are ideally placed to straddle this gap of scales, i.e., local control of small systems vs global control of large systems, to give insight into both fields. Systems of interacting photons in coupled cavities have been predicted to show quantum phase transitions (QPTs), and may be important as quantum simulators of complex dynamics. But the nature of the interactions is subtly different from more conventional condensed matter models. Here we describe the emergence of Hubbard-like dynamics in coupled cavity systems spanning finite to infinite structures, the nature of the excitations involved, how these coupled cavity systems can be understood as the optical analog of a solid-state system, and prospects for structures that can be fabricated to demonstrate the required interactions.