ABSTRACT

Ionic liquids are commonly deŸned as molten salts with melting points below 100°C. Typically, they are combinations of organic and inorganic ions selected to have poor packing or weakened interionic interactions in the solid state, and hence, low melting points. Ionic liquids have been considered as an ideal medium for a wide range of applications in the areas of energy, synthesis, electrochemistry, and biocatalysis, among others, and the Ÿeld of ionic liquids continues to grow as new types of ionic liquids continue to be developed (Welton, 2004; MacFarlane et al., 2007; van Rantwijk and Sheldon, 2007; Plechkova and Seddon, 2008; Wishart, 2009). The potential safety and environmental beneŸts of ionic liquids, as compared to conventional solvents, have drawn interest in their use as processing media for the nuclear fuel cycle (Earle and Seddon, 2000; Allen et al., 2002; Jensen et al., 2003; Chaumont and Wipff, 2004; Nikitenko et al., 2005; Cocalia et al., 2006; Dietz, 2006; Stepinski et al., 2006; Luo et al., 2006; Binnemans, 2007; Han and Armstrong, 2007). Therefore, an understanding of the interactions of ionizing radiation and photons with ionic liquids is strongly needed.