ABSTRACT

The problem of disturbance rejection for linear systems subject to actuator saturation has been addressed by many authors ([63, 66, 97, 102, 142]). Under the boundedness assumption on the magnitude of the disturbances and in the absence of initial condition, the L2-gain analysis and minimization in the context of both state and output feedback were carried out in [101, 102]. In [66], a method for analysis and maximization of an ellipsoid, which is invariant under magnitude bounded, but persistent disturbances, is proposed. The works of [63, 97, 109, 120, 127] all consider the situation where disturbances are bounded in energy. The works of [63, 109, 120] formulated and solved the problem of stability analysis and design as an optimization problem with LMI or BMI constraints. In [67, 68], authors presented LMI-based synthesis tools for regional stability and performance of linear anti-windup compensators for linear control systems. [32] presents a method for the analysis and control design of linear systems in the presence of actuator saturation and L2 disturbances.