ABSTRACT

Automotive Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 14.4 Time-Triggered Communication Services in Railway Applications . . . 346

. . . . . . . . . 14.4.2 Requirements on Railway Applications . . . . . . . . . . . . . . . . . . . . 348 14.4.3 Requirements on Communication Systems . . . . . . . . . . . . . . . . . 349 14.4.4 Generic System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

14.4.4.1 TAS Control Platform Redundancy Architecture 351 14.4.4.2 TAS Control Platform Communication System . . 351 14.4.4.3 TAS Control Platform Fault Tolerance Layer . . . . 353 14.4.4.4 Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

14.4.5 Application of Time-Triggered Protocols in the Railway Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 14.4.5.1 Interlocking: Architecture (Components,

Services, Interactions) . . . . . . . . . . . . . . . . . . . . . . . . . . 355 14.4.5.2 Field Element Controller . . . . . . . . . . . . . . . . . . . . . . . 356 14.4.5.3 Availability Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

14.4.6 Safety Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 14.4.6.1 Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 357 14.4.6.2 TTP-Configuration and Schedule . . . . . . . . . . . . . . . 358

14.4.7 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

14.1 Introduction This chapter describes industrial applications of time-triggered communication. We present products and real-world systems, which are examples for the use of the timetriggered networks that were introduced in the previous chapters. In particular, we discuss the advantages and disadvantages of the properties of time-triggered communication protocols in these examples. The properties of time-triggered protocols such as composability, determinism and predictability are most useful in safety-critical applications, where these properties facilitate the realization of fault-tolerance, timeliness in all specified fault and load scenarios, rigid validation and certification. Therefore, we present examples of safety-relevant systems from the aerospace, automotive and railway domains. For each domain we outline a typical overall system architecture and explain the role of time-triggered communication networks in this architecture. We discuss the requirements of the domain and explain how these requirements are met by the time-triggered communication protocols.