ABSTRACT

A multidisciplinary field, encompassing both geophysics and civil engineering, geomechanics deals with the deformation and failure process in geomaterials such as soil and rock. Although powerful numerical tools have been developed, analytical solutions still play an important role in solving practical problems in this area. Analytic Methods in Geomechanics provides a much-needed text on mathematical theory in geomechanics, beneficial for readers of varied backgrounds entering this field.

Written for scientists and engineers who have had some exposure to engineering mathematics and strength of materials, the text covers major topics in tensor analysis, 2-D elasticity, and 3-D elasticity, plasticity, fracture mechanics, and viscoelasticity. It also discusses the use of displacement functions in poroelasticity, the basics of wave propagations, and dynamics that are relevant to the modeling of geomaterials. The book presents both the fundamentals and more advanced content for understanding the latest research results and applying them to practical problems in geomechanics.

The author gives concise explanations of each subject area, using a step-by-step process with many worked examples. He strikes a balance between breadth of material and depth of details, and includes recommended reading in each chapter for readers who would like additional technical information. This text is suitable for students at both undergraduate and graduate levels, as well as for professionals and researchers.

chapter 1|16 pages

Elementary Tensor Analysis

chapter 2|46 pages

Elasticity and Its Applications

chapter 4|66 pages

THREE-DIMENSIONAL SOLUTIONS IN ELASTICITY

chapter 5|38 pages

Plasticity and Its Applications

chapter 6|60 pages

Fracture Mechanics and Its Applications

chapter 7|38 pages

VISCOELASTICTY AND ITS APPLICATIONS

chapter 9|34 pages

DYNAMICS AND WAVES IN GEOMATERIALS