ABSTRACT

E v E

v E E

G

  

  

  

  

=

 

1 0

1 0

0 0 1

  

  

  

  

  

  

  

σ

σ

τ

(11.1)

Problem:Howthisrelationshiptransformswhenitisexpressedinaxes(x, y)distinctfrom(ℓ, t) and forming any angle θ with the (ℓ, t) coordinates? (See Figure 11.1.)‡

First, let us recall the following:

◾ Recall 1: ”e stress σ acting on a side with normal vector n is given by

σ σ{ } =   { }ij n

Columnmatrix of components of stress Stress matrix Column mat

σ rix of directional cosines of

n

(11.2)

◾ Recall 2: ”e coordinates of asame vector V

in two distinct coordinate systems (x, y) and (ℓ, t), such that ( )

x , = θ, are

V V V t V x V yt x y

= + = +

with the relation

V

V

c s

s c

V

V

c

s x

  

   −

  

  

  

  

= =

 

  =

cos

sin

θ θ

(11.3)

In axes (ℓ, t), let us express, through the relationship in Equation 11.2, the stress acting on a facet ofnormalx :

c

s { } =   { } =  

  

  

where {σ/x} is the stress vector [σij] is the stress matrix

And in axes (x, y), following Equation 11.3,

c s

s c

c

s ij{ } = −

 

   

  

  

In a similar manner, the stress acting on a facet with the normal y is written in the (x, y)

axes as

c s

s c

s

c ij{ } = −

 

   

−  

  

”erefore, the stress matrix in (x, y) axes is

σ σ σ σij ijx y tx y

c s

s c

c s

s c   = 

  = −

 

   

−

 

 , ,/ /,

By setting

P

c s

s c [ ] =

− 

 

 

and observing that matrix [P] is orthogonal, that is, t[P] = [P]−1, we have*

σ σij t

P P  = [ ]  [ ], ,

where t[P] is the transpose of matrix [P]. In developing that expression,

σ τ τ σ

σ τ τ σ

c s

s c

c s

s c 

 

  =

−

 

  

 

  − 

 

 

which can be rearranged to give

σ σ τ

σ σ

xc s cs

s c cs

sc sc c s

 

 

 

  =

− −

  

  

( ) y

xyτ

 

 

 

 

(11.4)

”en

σ σ[ ] = [ ][ ], ,t x yT

with*

T

c s sc

s c sc

sc sc c s

[ ] = −

− −

  

  

( )

With consideration of strains allowing a similar calculation procedure, we can write parallel to this

ε ε ε

ε ε

c s cs

s c cs

cs cs c s

 

 

 

  = −

− −

  

  

( )

 

 

 

 

or

ε ε γ

ε ε

c s cs

s c cs

cs cs c s

 

 

 

  = −

− −

  

  

2 22 2 ( )

 

 

 

 

”en

ε γ

ε γ

  

  

= ′[ ] 

with

′[ ] = − − −

  

   = [ ]T

c s cs

s c cs

cs cs c s

2 22 2 ( )

In this way, we can express Equation 11.1 in axes (x, y), since we have written

ε γ

ε γ

ε γ

  

  

= ′[ ] 

  

  

  

=

T

E v E

v E

;

1 0

1 0

0 0 1

E

G

      

      

{ } { } = [ ]{ }σ σ σ, , ,;

from which by substituting

ε

ε

γ

T

E v E

v E E

   

   

   

   

= ′[ ]

1 0

1 0

0 0

1 G

T

        

        

[ ]

σ

σ

τ

   

   

   

   

Aftercalculation,thefollowingbehaviorrelationshipappears,writtenintechnicalformincoordinates(x, y)thatmakeanangleθwithaxes(ℓ, t).ItrevealstheelasticmoduliandPoisson’sratios relatingtothesedirections.”enonconventionalcouplingcoeªcientsdenotedbyηandμ* show, for example, that a normal stress induces a distortion.†

ε

ε

γ

η

µ

E

v

E G

v

E E G

   

   

   

   

=

E E G η µ

σ

σ

τ1

        

        

   

   

   

   

= + + −

 

with:

E c E

s E

c s G

v E

( )θ 1

1 2

 

= + + −

 

 

E s E

c E

c s G

v E

G

( )θ 1

1 2

c s E E

v E

c s G

v

E

( ) ( )

( )

θ

θ

= + +

 

  +

− 1

4 1 1

= + − + − 

 

 

= −

v E

c s c s E E G

G cs

c

( )

( )

1 1 1

2 η

θ E

s E

c s v E G

G cs

− + − − 

 

 

  

  

= −

( )

( ) µ

θ s E

c E

c s v E Gt t

− − − − 

 

 

  

  

( )

(11.5)

σ

σ

τ

E v v

v E v v

   

   

   

   

=

− −( ) ( )1 1 0

v E v v

E v v

G

( ) ( )1 1 0

0 0

− −

        

        

ε

ε

γ

   

   

   

   

whereappearelasticsti¨nesscoeªcientsasopposedtothoseofEquation11.1referredtoas §exibility coeªcients. To ease writing, it will be preferably noted:

σ σ τ

ε ε γ

E v E

v E E

G

 

 

 

  = 

  

  

0 0

 

 

 

(11.6)

Anidenticalproceduretothatfollowedabovetoobtainstrain-stressbehaviorleadstothe stress-strain relation:

σ σ τ

c s cs

s c cs

cs cs c s

T

 

 

 

  = −

− −

  

  

( )

 

 

 

 

 

 

σ σ τ

ε ε γ

  =

− −

  

  

  =  

c s cs

s c cs

cs cs c s

tT T

2 22 2

( )

ε ε γ

 

 

 

 

(11.7)

Recallthataxes(x, y)arederivedfromaxes(ℓ, t)byrotationθaboutthethirdaxisz.Substituting Equations 11.7 into 11.6, we obtain

σ σ τ

T

E v E

v E E

G

T

 

 

 

  = [ ]

  

   [ ]1 1

0 0

′ ε ε γ

 

 

 

 

which can be rewritten as

σ σ τ

ε ε

xE E E

E E E

E E E

 

 

 

  = 

  

  

xyγ

 

 

 

 

Oncethecalculationisperformed,thefollowingexpressionsofstinesscoeªcientsEij are obtained, in which c = cos θ and s = sin θ:

σ σ τ

ε ε

xE E E

E E E

E E E

 

 

 

  =

  

  

E c E s

γ

θ

 

 

 

 

= +

with

:

E c s v E G

E s E c E c s v E

+ +

= + +

2 2

( )

( ) (

θ

+

= + − + −

G

E c s E E v E c s G

)

( ) ( ) ( )

θ

E c s E E G c s v E

E

4( ) ( ) ( )

(

θ = + − + +

θ

θ

) ( )( )

( )

= − − − − +{ } = −

cs c E s E c s v E G

E cs

s E c E c s v E Gt t t 2 2 2 2 2 − + − +{ }( )( )

expressions in which:

; E E v v

E E v vt t

= −( )

= −( )1 1

(11.8)

”evariationofthesestinesscoeªcientsEij as functions of angle θ is pictured in Figure 11.2 for aplycharacterizedbyverydierentvaluesofmoduliEℓ and Et, corresponding, for example, to the case of unidirectionalber/resin layers.*

11.3 Case of Thermomechanical Loading 11.3.1 Flexibility Coefcients When considering the temperature variations,* the behavior relation in Equation 11.1 should be replaced with the amended form in Equation 10.9, namely, 

ε

ε

γ

E v E

v E E

G

   

   

   

   

=

1 0

1 0

0 0 1

        

        

   

   

   

   

+

σ

σ

τ

α

α

T∆ t

   

   

   

   

in which αℓ and αt are the thermal expansion coeªcients of the unidirectional layer along the longitudinaldirectionℓandtransversedirectiont,respectively.Followingthesameprocedureas in Section 11.1 with the same notations, we can write

ε γ

ε γ

σ σ   

  

= [ ] 

  

{ } = [ ]{ } x y t

;′

from where, by substituting,

ε

ε

γ

T

E v E

v E E

   

   

   

   

= [ ]

−′

1 0

1 0

0 0

1 G

T

        

        

[ ]

   

   

   

  

σ

σ

τ 

+ [ ]

   

   

   

   

∆T T t′

α

α

Inthisrelationship,wendagainthe©exibilitymatrixontherightside,thetermsofwhichare described in details in Equation 11.5. ”e second term on the right side is written as

∆ ∆T c s cs

s c cs

cs cs c s

T

c

2 22 2 0

− −

  

  

 

 

 

  =

( )

α α

α α α α α α

+ + −

 

 

 

 

s

s c

cs

t( )

”erefore, the thermomechanical behavior relationship for a unidirectional layer, written in axes (x, y) other than the specic coordinates (ℓ,  t) of unidirectional, can be summarized as follows:

ε

ε

γ

η

µ

E

v

E G

v

E E G

  

   

  

   

=

xy E E G η µ

σ

σ

τ1

       

       

  

   

  

   

+

  

   

  

   

∆T

E E G v v

α

α

α

, , , , x xy xy, ,η µ are given by relations (11.5)

α α αx tc s= +2 2

α α α

α α

s c

cs

= +

= −

α

θ θ

( )

= = c scos ; sin

(11.9)

11.3.2 Stiffness Coefcients By inversion of Equation 10.9, we get

σ σ τ

E v v

v E v v

v E v v

 

 

 

  =

−( ) −( )

1 1 0

( ) −( )

     

     

 

  

 

 

E v v

G

t1 0

0 0

ε

ε γ 

− −( )

+ −( )

−( ) +

∆T

E v v

v E v v

v E v v

1 1

1 1

α α

α −( )

 

  

 

  

α

Following the procedure of Section 11.2, with the same notations, we can write

σ σ

ε γ

ε γ

{ } = [ ]{ }  

  

= ′ 

    

  

T T , ,

from where, by replacing,

σ σ τ

T

E v E

v E E

G

T

 

 

 

  = [ ]

  

  

′ 1 1

0 0

  

 

 

 

  − [ ]

+ +

 

ε ε γ

α α α α

E v E

v E E∆ 1 0

 

 

Inthersttermontherightside,wendagainthematrixdetailedinEquation11.8.”esecond term can be developed as follows:

− − − −

  

  

+ ∆T

c s cs

s c cs

cs cs c s

E v E

v E t t

( )

α α α +

 

 

 

  = ⋅ ⋅ ⋅Et tα

⋅ ⋅ ⋅ − +( ) + +( ) +( ) +∆T

c E v s E v

s E v c E t t t t t

α α α α α α t t t

v

cs E v E v

α α

α α α α

+( ) +( ) − +( ) 

 

  

 

  

”erefore,thethermomechanicalbehaviorrelationshipwritteninaxes(x, y)otherthanthe specic unidirectional coordinates (ℓ, t) can be summarized as follows:

σ σ τ

ε ε

xE E E

E E E

E E E

 

 

 

  = 

  

  

T

E

E

E

E E E E

γ

α

α

α

 

 

 

  −

 

  

 

  

E c E vt t

are given by relations (11.8)

α α α= +( ) + +( )

= +( ) + +( )

=

s E v

E s E v c E v

E cs E

α α

α α α α α

α

v E v

c s

E E v v

α α α α

θ θ

+( ) − +( )  = =

= −(

cos ; sin

1 )

= −( )

E E v v

(11.10)

This page intentionally left blank