ABSTRACT

Global warming and climate change are attributed to increases in the concentration of greenhouse gases (GHG) in the atmosphere, from anthropogenic emissions of CO2, from the pre-industrial revolution level of about 260 ppm, to present day concentrations of about 391 ppm, viz., ~35% increase [1]. The main sources of GHG emissions are associated with burning fossil fuels, changing land usage, and cultivation of the soil. To combat global climate change will require a combination of approaches including improving energy efficiency and using alternative energy sources. Predictions of the increased use of energy globally during this century and continued reliance on fossil fuels point to a further rise in GHG emissions [2] with a concomitant one in atmospheric CO2 concentrations. These consequences cannot be abated unless major changes are made in the way energy is produced and used; in particular, how carbon is managed [3,4]. Mitigating the forecast increase in fossil-fuel consumption includes pro-

(CCS)). The attractiveness of the CCS program stimulated significant investments by governments and the private sector to develop the necessary technologies, and to evaluate whether CO2 control could be implemented safely and effectively to maintain the CO2 in reservoirs. The United States Department of Energy (USDOE) prepared a roadmap for the CCS program [5]. The program's early planners recognized the potential risks of geological storage to humans and ecosystems that might arise from leaking injection wells, abandoned wells, across faults, and from ineffective confining layers. Hence, cost-effective, robust monitoring must be an integral part of and specifically designed for every individual CCS project.