#### Get Citation

Quantitative approximation methods apply in many diverse fields of research-neural networks, wavelets, partial differential equations, probability and statistics, functional analysis, and classical analysis to name just a few. For the first time in book form, Quantitative Approximations provides a thorough account of all of the significant developments in the area of contemporary quantitative mathematics. It offers readers the unique opportunity of approaching the field under the guidance of an expert.

Among the book's outstanding features is the inclusion of the introductory chapter that summarizes the primary and most useful results. This section serves not only as a more detailed table of contents for those new to an area of application, but also as a quick reference for more seasoned researchers.

The author describes all of the pertinent mathematical entities precisely and concretely. His approach and proofs are straightforward and constructive, making Quantitative Approximations accessible and valuable to researchers and graduate students alike.

Quantitative approximation methods apply in many diverse fields of research-neural networks, wavelets, partial differential equations, probability and statistics, functional analysis, and classical analysis to name just a few. For the first time in book form, Quantitative Approximations provides a thorough account of all of the significant developments in the area of contemporary quantitative mathematics. It offers readers the unique opportunity of approaching the field under the guidance of an expert.

Among the book's outstanding features is the inclusion of the introductory chapter that summarizes the primary and most useful results. This section serves not only as a more detailed table of contents for those new to an area of application, but also as a quick reference for more seasoned researchers.

The author describes all of the pertinent mathematical entities precisely and concretely. His approach and proofs are straightforward and constructive, making Quantitative Approximations accessible and valuable to researchers and graduate students alike.

Quantitative approximation methods apply in many diverse fields of research-neural networks, wavelets, partial differential equations, probability and statistics, functional analysis, and classical analysis to name just a few. For the first time in book form, Quantitative Approximations provides a thorough account of all of the significant developments in the area of contemporary quantitative mathematics. It offers readers the unique opportunity of approaching the field under the guidance of an expert.

Among the book's outstanding features is the inclusion of the introductory chapter that summarizes the primary and most useful results. This section serves not only as a more detailed table of contents for those new to an area of application, but also as a quick reference for more seasoned researchers.

The author describes all of the pertinent mathematical entities precisely and concretely. His approach and proofs are straightforward and constructive, making Quantitative Approximations accessible and valuable to researchers and graduate students alike.