ABSTRACT

Throughout our discussion of the general principles of quantum mechanics we have emphasized the importance of the eigenvalues and eigenfunctions of the operators representing physical quantities. However, we have seen that solving the basic eigenvalue equations determining these is often not straightforward. In the early chapters discussing the energy eigenvalue equation (or time-independent Schro¨dinger equation) for example, we found that this could often not be solved exactly and that, even when a solution was possible, it frequently required considerable mathematical analysis. Because of this, methods have been developed to obtain approximate solutions to eigenvalue equations. One of the most important of such techniques is known as time-independent perturbation theory and will be the first method to be discussed in the present chapter. Another, known as the variational principle, will be discussed later. We shall confine our discussion to the particular case of the energy eigenvalue equation and use the wave function representation, but we shall restate some of the important results in Dirac notation so that they can be readily transformed to a matrix representation if desired.