ABSTRACT

Laboratory for Optical Sensing and Monitoring, Center for Biomedical Engineeer-

ing, Department of Neuroscience and Cell Biology, and Department of Anesthesiol-

ogy, The University of Texas Medical Branch, Galveston, TX 77555-0456, USA

Donald S. Prough

Department of Anesthesiology, The University of Texas Medical Branch, Galveston,

TX 77555-0591, USA

18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564

18.2 Noninvasive Optical Techniques for Glucose Monitoring . . . . . . . . . . . . . . . . . . 566

18.3 Optical Coherence Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567

18.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569

18.5 Studies in Tissue Phantoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570

18.6 Animal Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571

18.7 Specificity Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572

18.8 Clinical Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574

18.9 Mechanisms of Glucose-Induced Changes in Optical Properties of Tissue . . 576

18.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579

Monitoring and control of blood glucose concentration substantially minimize com-

plications, mortality, and morbidity associated with diabetes. We have developed a

high-resolution optical technique, Optical Coherence Tomography (OCT), for non-

invasive, continuous, accurate monitoring of blood glucose concentration. OCT is

based on detection of backscattered low-coherent light and utilizes scattering con-

trast in tissues. It has a resolution of 1-15 µm and a probing depth of about 1 mm. In this chapter we review major achievements in the development of this technique for

noninvasive glucose monitoring from the concept phase to successful clinical stud-

ies. Our initial phantom, animal, and clinical tests on glucose monitoring with this

technique demonstrated that the OCT signal slope is linearly dependent on glucose

of

concentration. Initial in vivo studies in animals and volunteers revealed good corre-

lation of the OCT signal slope with blood glucose concentration. Then we modified

the hardware, software, and signal acquisition and processing algorithms and per-

formed another set of animal and clinical studies. The modified system allows for

robust measurement of OCT signal slope with high accuracy and resolution from

specific tissue layers. The results obtained with the modified system demonstrated

substantially higher correlation of the OCT signal slope with blood glucose concen-

tration and minimal (a few minutes) lag time between them. Moreover, our in vivo

studies with the modified system revealed reproducibility, accuracy, and specificity

approaching that of standard invasive techniques. The obtained results demonstrate

that the proposed technique may be used for noninvasive, continuous, accurate mon-

itoring of blood glucose concentration.