ABSTRACT

The most important mechanism behind spin relaxation in metals is believed to be the spin-flip scattering of electrons due to interactions with phonons and impurities, as suggested by Elliott8 and Yafet9. Because of the spin-orbit interactions produced by lattice ions, electronic Bloch states contain both spin up and spin down components. The states can still be polarized by a magnetic field (so we can label them spin up and spin down) but because of the spin mixing, even a spin-independent perturbation induced by phonons or impurities leads to a degrading of a spin-polarized electron population. It is important to note that it is the spin-orbit interaction in conjunction with phonons and impurities that induces spin relaxation, not the spin-orbit interaction alone.