ABSTRACT

Implantable stimulators for neuromuscular control are the technologically most advanced versions of functional electrical stimulators. Their function is to generate contraction of muscles, which cannot be controlled volitionally because of the damage or dysfunction in the neural paths of the central nervous system (CNS). Their operation is based on the electrical nature of conducting information within nerve fibers, from the neuron cell body (soma), along the axon, where a travelling action potential is the carrier of excitation. While the action potential is naturally generated chemically in the head of the axon, it may

Bronz: “2122_c059” — 2006/2/9 — 22:03 — page 2 — #2

also be generated artificially by depolarizing the neuron membrane with an electrical pulse. A train of electrical impulses with certain amplitude, width, and repetition rate, applied to a muscle innervating nerve (a motor neuron) will cause the muscle to contract, very much like in natural excitation. Similarly, a train of electrical pulses applied to the muscular tissue close to the motor point will cause muscle contraction by stimulating the muscle through the neural structures at the motor point.