ABSTRACT

An electrosurgical unit (ESU) passes high-frequency electric currents through biologic tissues to achieve specific surgical effects such as cutting, coagulation, or desiccation. Although it is not completely understood how electrosurgery works, it has been used since the 1920s to cut tissue effectively while at the same time controlling the amount of bleeding. Cutting is achieved primarily with a continuous sinusoidal waveform, whereas coagulation is achieved primarily with a series of sinusoidal wave packets. The surgeon selects either one of these waveforms or a blend of them to suit the surgical needs. An electrosurgical unit can be operated in two modes, the monopolar mode and the bipolar mode. The most noticeable difference between these two modes is the method in which the electric current enters and leaves the tissue. In the monopolar mode, the current flows from a small active electrode into the surgical site, spreads through the body, and returns to a large dispersive electrode on the skin. The high current density in the vicinity of the active electrode achieves tissue cutting or coagulation, whereas the low current density under the dispersive electrode causes no tissue damage. In the bipolar mode, the current flows only through the tissue held between two forceps electrodes. The monopolar mode is used for both cutting and coagulation. The bipolar mode is used primarily for coagulation.