ABSTRACT

Delft University of Technology, Faculty of Applied Sciences, DelftChemTech, Section R&CE, Julianalaan 136, 2628 BL Delft, The Netherlands

k.m.delathouder@tnw.tudelft.nl

Abstract The use of a monolithic stirred reactor for carrying out enzyme-catalyzed reactions is presented. Enzyme-loaded monoliths were employed as stirrer blades. The ceramic monoliths were functionalized with conventional carrier materials; carbon, chitosan, and polyethylenimine (PEI). The different nature of the carriers with respect to porosity and surface chemistry allows tuning of the support for different enzymes and for use under specific conditions. The model reactions performed in this study demonstrate the benefits of tuning the carrier material to both enzyme and reaction conditions. This is a must to successfully intensify biocatalytic processes. The results show that the monolithic stirrer reactor can be effectively employed in both mass transfer limited and kinetically limited regimes. Introduction Ceramic honeycomb monoliths are porous macro-structured supports consisting of parallel channels. On the walls a thin layer of active material can be applied (Figure 1). Honeycomb catalyst supports were originally developed for use in automotive

emission control systems where the combination of low pressure drop and high surface area are important (1). For liquid systems, the advantages of structured reactors compared to fixed-bed or slurry reactors include a high available surface area, a low pressure drop over the reactor, ease of product separation, absence of maldistribution problems, and easy scale-up (2,3).