ABSTRACT

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 II. Hydrogen-Bonding Subunits for Supramolecular Polymer Construction . . . . . . . . . . . . . . 155

A. General Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 B. Models for Predicting the Stability of Multiply Hydrogen-Bonded Complexes . . . . 155 C. Examples of Multiply Hydrogen-Bonding Building Blocks . . . . . . . . . . . . . . . . . . . . 157

III. Hydrogen-Bonded, Supramolecular Liquid-Crystalline Polymers . . . . . . . . . . . . . . . . . . . 159 A. General Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 B. Main-Chain Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 C. Side-Chain Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 D. Liquid Crystals from Cyclic, Hydrogen-Bonded Aggregates . . . . . . . . . . . . . . . . . . . . 165

IV. Hydrogen-Bonded, Supramolecular Polymers in Isotropic Solution . . . . . . . . . . . . . . . . . . 166 A. Main-Chain Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 B. Hydrogen-Bonding Telechelic Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 C. Side-Chain Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 D. Hydrogen-Bonded Dendrimers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

V. From Dispersions to Monolayers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 VI. Reversible Coordination Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 VII. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

I. INTRODUCTION

Of the innumerable chemical advances in the 20th century, one could argue that the development of polymers has had the most dramatic impact upon everyday living. Spurred by an overwhelming accumulation of fundamental knowledge in chemistry and physics, polymer science has blossomed into a field that has shaped, in part, both industry and academia. As part of the evolution of

CIFE: “dk3116_c006” — 2005/3/4 — 19:17 — page 154 — #2

this field, numerous strategies have been developed for synthesizing polymers. These polymers, viewed simplistically, consist of covalently linked repeat units derived from single molecule precursors (monomers). However, recently there have been reports of “supramolecular polymers” [1] constructed from noncovalently associated monomers. Certainly, these studies challenge Carothers’ original notion that structural repeat units “are not capable of independent existence” [2]. Taken more broadly, supramolecular polymers encompass specific, noncovalent interactions between repeat units and side chains of classical, covalent polymers, as well as interactions of these polymers with small molecules or metal ions.