ABSTRACT

Department of Electrical Engineering, University of California, Riverside, CA, USA

Hai Wang

University of Electronics Science and Technology of China, Chengdu, Sichuan, China

Hao Yu

School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore

17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 17.2 The envelope-following method in a nutshell . . . . . . . . . . . . . . . . . . . . 398 17.3 New parallel envelope-following method . . . . . . . . . . . . . . . . . . . . . . . . . 400

17.3.1 GMRES solver for Newton update equation . . . . . . . . . . . . 400 17.3.2 Parallelization on GPU platforms . . . . . . . . . . . . . . . . . . . . . . . 402 17.3.3 Gear-2 based sensitivity calculation . . . . . . . . . . . . . . . . . . . . . 404

17.4 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406 17.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410 17.6 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

Power converters have seen a surge of new trends and novel applications due to their widespread use in renewable energy systems and emerging hybrid and purely-electric vehicles. More efficient simulation techniques for power converters are urgently needed to meet more design constraints. In this chapter, we present a novel envelope-following parallel transient analysis method for the general switching power converters. The new method first exploits the parallelisim in the envelope-following method and parallelize the New-

ton update solving part, which is the most computational expensive, in GPU platforms to boost the simulation performance. To further speed up the iterative GMRES solving for Newton update equation in the envelope-following method, we apply the matrix-free Krylov subspace basis generation technique, which was previously used for RF simulation. Last, the new method also applies more robust Gear-2 integration to compute the sensitivity matrix instead of traditional integration methods.