ABSTRACT

The study of team effectiveness has historically relied largely on experimental and naturalistic data from empirical human teams, typically analyzed and summarized by mathematical and statistical analysis methods. Computational modeling, in contrast, has been much less frequently employed. This low use of modeling is particularly noticeable in comparison with the life or physical sciences or even with other branches of behavioral science such as cognitive science or linguistics. In these latter areas, computational modeling is routinely used as a core scientific method for managing complexity, for comparing and testing theories, and for dealing with problems and limitations to empirical observation and experimental control. Such issues apply to team performance and effectiveness research, suggesting that the broader use of computational modeling would be both appropriate and highly beneficial to the field. The existing body of work on computational modeling of teams, although small, can form a foundation for more widespread use of this approach. This chapter provides an overview of the use of computational models in team effectiveness, focusing on the differences among the various types of models and the various purposes that computational models of teams may serve.