chapter  10

Brain–Machine Interfacing and Motor Prosthetics

WithA.E. Brockwell, M. Velliste

Summary

Interaction of humans and mechatronic systems can be facilitated through a suitable human—machine interface. Going a significant step further, the machine interface may be linked directly to the brain so that a human brain can directly communicate with a mechatronic device through wireless means. Such a communication link has obvious advantages, particularly for disabled users and operators of mechatronic devices. In recent years, neuroscientists have made significant progress in understanding the relationship between neuronal firing patterns and limb motion in primates. The results have made it possible to begin work on a new generation of prosthetic devices. These devices will apply state-of-the-art robotics and statistical signal processing techniques to data collected from electrodes implanted directly in the brain. Neural signals will be recorded, transmitted through wireless communication to a CPU contained within the robotic arm (or leg), and processed to translate intent into actuator command. Such brain-controlled prosthetic arms and other mechatronic devices could enable paralyzed people or amputees to recover the lost ability to interact with the physical environment; for example, to feed themselves. A prototype of such a device has been developed in the laboratory, and successfully operated by monkeys. In this chapter, we discuss the state of this work (as of late 2005). We also describe some of the remaining hurdles to be overcome before such devices become practical and safe for human use.