ABSTRACT

Despite advances in our understanding of solid tumor biology and genetics, conventional pathology continues to dictate much of today’s routine cancer treatments. However, clinicians and investigators are now beginning to recognize that molecular proling of tumors could help prune ineffective therapies and potentially streamline clinical trial subject selection, critical ingredients for achieving personalized medicine [1,13,14]. Practical considerations, including the risks and costs associated with serial core biopsies or surgical resections, often limit the amount of tissue sampled. Yet conventional methods for tumor characterization and molecular proling, such as immunohistochemistry, •ow cytometry, or western blot analyses, require tumor sample sizes that exceed the yield of other less invasive sampling techniques such as ne needle aspirates (FNA). Despite promising advances in nanotechnology-based biosensing strategies, there remains an outstanding need for clinically useful and practical sensing

42.1 Introduction ...................................................................................................................................731 42.1.1 Microcoils ........................................................................................................................ 733 42.1.2 Micro•uidics .................................................................................................................... 734 42.1.3 NMR Electronics ............................................................................................................. 735 42.1.4 Signal Acquisition ........................................................................................................... 735

42.1.4.1 DMR Assay ...................................................................................................... 736 42.1.4.2 Bio-Orthogonal Nanoparticle Detection II (BOND-2).................................... 737

42.2 Materials and Methods................................................................................................................. 739 42.2.1 BOND-2 Assay ................................................................................................................ 739

42.2.1.1 Antibody Modications ................................................................................... 739 42.2.1.2 Tz Modication of MFNPs .............................................................................. 739

42.2.2 Flow Cytometry Experiments ......................................................................................... 739 42.2.3 Measurement of Biomarker Expression Levels on Cells ................................................ 740 42.2.4 FNA Protocols ................................................................................................................. 740

42.3 Results .......................................................................................................................................... 740 42.3.1 Cancer Detection in Xenograft Models........................................................................... 740 42.3.2 Cancer Cell Proling ....................................................................................................... 740 42.3.3 Protocol for Analytical Measurements............................................................................ 740 42.3.4 Multiplexed Proling ........................................................................................................741

42.4 Discussion .....................................................................................................................................743 42.5 Future Trends ................................................................................................................................745 Acknowledgments ...................................................................................................................................745 References ...............................................................................................................................................745

platforms that have high sensitivity/specicity, require minimal sample preparation, and provide robust measurements-key driving factors in biodiagnostic development [4].