ABSTRACT

NIKOLAI V. ULITIN,1 NAIL K. NURIEV,1 RAFIT R. NABIEV,1 ILSHAT I. NASYROV,1 DARIA A. SHIYAN,1 and GENNADY E. ZAIKOV2

1Kazan National Research Technological University, 68 Karl Marx Street, 420015 Kazan, Republic of Tatarstan, Russian Federation; Fax: +7 (843) 231-41-56; E-mail: n.v.ulitin@mail.ru

2N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4, Kosygina st., Moscow, Russian Federation, 119334; Fax: +7(499)137-41-01; E-mail: chembio@sky.chph.ras.ru

CONTENTS

Abstract ..................................................................................................... 2 1.1 Introduction ...................................................................................... 2 1.2 Mathematical Model ........................................................................ 2 1.3 Experimental Part ............................................................................. 6 1.4 Modeling of Topological Structure of Experimental Objects .......... 8 1.5 Theoretical Assessment of Constants for

Stress Birefringence Model .............................................................11 1.6 Adequacy of the Model .................................................................. 16 1.7 Conclusion ..................................................................................... 17 Keywords ................................................................................................ 17 References ............................................................................................... 18

ABSTRACT

Aiming to control by stress birefringence the radiotransparent fiberglass plastic products based on highly cross-linked polymer matrices, theoretical regularities for mathematical description of this property were developed. Computer physical modeling of topological structure of experimental objects was carried out on epoxy-amine polymers with different cross-link density taken as an example. And constants of this model were specified. The adequacy of the model was demonstrated by comparison of the model-calculated against experimental approach to thermal polarization curves.