ABSTRACT

In this paper, full-depleted SOI devices with source/drain extension shift and high-κ offset spacer were investigated in detail. The calculated results show that the source/drain extension shift can decrease off-state leakage current Ioff significantly by utilizing the extra electron barrier height in source/drain extension shift region to reduce standby power dissipation. However, the on-state driving current Ion is also sacrificing simultaneously. In order to overcome this drawback, the high-κ offset spacer is used to increase the on-state driving current Ion effectively due to the enhanced vertical fringing electric field to elevate the channel voltage drop and reduce series resistance. Consequently, a nanoscale FD SOI device with 8-nm S/D extension shift and TiO2 offset spacer can possess high driving current Ion and ultra-low leakage current Ioff about 0.003 times lower than conventional SOI structure.