ABSTRACT

430Biomedical investigators are currently able to acquire and analyze physiological and anatomical data from three-dimensional structures in the body. Often, multiple kinds of data can be recorded simultaneously. The usefulness of this information, either for exploratory viewing or for presentation to others, is limited by the lack of techniques to display it in intuitive, accessible formats. Unfortunately, the complexity of scientific visualization techniques and the inflexibility of commercial packages deter investigators from using sophisticated visualization methods that could provide them added insight into the mechanisms of the phenomena under study. Also, the sheer volume of such data is a problem. High-performance computing resources are often required for storage and processing, in addition to visualization.

This chapter describes a novel, language-based interface that allows scientists with basic programming skills to classify and render multivariate volumetric data with a modest investment in software training. The interface facilitates data exploration by enabling experimentation with various algorithms to compute opacity and color from volumetric data. The value of the system is demonstrated using data from cardiac mapping studies, in which multiple electrodes are placed in and on the heart to measure the cardiac electrical activity intrinsic to the heart and its response to external stimulation.