ABSTRACT

The confinement of mortar in masonry under compression is one of the key processes influencing the compressive strength of the composite material. It is triggered by the mismatch of elastic properties between units and mortar, coupled with deformation conformity between the two material phases. In cases where the mortar is particularly deformable compared to the units, this confinement results in a peak stress many times the uniaxial compressive strength of the mortar. Therefore, a careful examination of this effect is critical in understanding the failure mechanisms of masonry in compression.Mortar under compression can be modelled in a damage mechanics context, following the establishment of a) a constitutive stress-strain relation, b) a model for the increase of the compressive failure stress under lateral confinement and c) a model for the development (increase) of the Poisson’s ratio of mortar under different stress levels. The first aspect is approached using established hardening-softening curves used for quasi-brittle materials, such as concrete. The second aspect is dealt with through the adoption of a suitable and sufficiently flexible failure criterion. The third aspect is addressed through fitting against experimental data.The above aspects are expressed in a damage mechanics context, resulting in fast calculations of the compressive stress-strain curves for confined mortar. This approach allows the quantification of the development of damage in compression, the development of the apparent compressive strength and the relation between orthogonal strains in the mortar, leading to a full characterization of the stress, deformation and damage of the material. The analysis results are compared to experimental findings on different mortar types and are used for their interpretation and evaluation. The complexity of the behaviour of confined mortar is demonstrated, motivating the use of advanced numerical models for its accurate simulation and assessment.