chapter  10
32 Pages

Fabrication Methods

WithDarell Engelhaupt

Fabrication methods and performance requirements for the production of precise optical and optomechanical support systems are necessarily quite variant. As pointed out in Chapter 4, optical components consist of an almost endless list of forms and requirements. (The reader is referred to Chapter 4 for additional information regarding materials and fabrication requirements). The entire optical or optomechanical device must, therefore, be proposed and subsequently designed as a complete compilation of performance and cost issues. Many optical development efforts have relied on “breadboarding” components to determine the system performance characteristics without regard to subsequent fabrication consequences. Modern integration of computer optical design programs, computer-aided-design (CAD) and thermal, mechanical, and material properties programs using finite element analysis (FEA) now permits a very reasonable prediction of performance. This effort can be used prior to prototyping or breadboarding in the more provincial approaches. By developing the entire system using integrated design approaches, the very data set from the ray-trace can be superimposed on the 3-D CAD drawing package, and critical issues such as interference, vignetting, and component mounting can be resolved prior to material selection or fabrication efforts.