ABSTRACT

Haiyang Ding, Tangwen Xu, Daniel B. da Costa, Jianhua Ge, Yinfa Zhang, Wulin Liu, and Ya-Ni Zhang

CONTENTS 18.1 Energy-Efficient And Low-Complexity Schemes for Non-Cooperative Uplink

Cognitive Cellular Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424 18.1.1 Three Low-Complexity Schemes for Uplink Cognitive Cellular Networks . . 425

18.1.1.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 18.1.1.2 Opportunistic Scheduling Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 425 18.1.1.3 Round-Robin CU Scheduling Scheme . . . . . . . . . . . . . . . . . . . . . . . 427 18.1.1.4 A Statistics-Based CU Scheduling Scheme . . . . . . . . . . . . . . . . . . 428 18.1.1.5 Numerical Examples and Discussions . . . . . . . . . . . . . . . . . . . . . . . 429 18.1.1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

18.2 An Improved Scheduling Scheme for Uplink Cognitive Cellular Networks . . . . . . . . . . 430 18.2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430 18.2.2 An Improved Scheduling Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430 18.2.3 Numerical Examples and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432

18.2.3.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 18.3 High-Efficient and Low-Complexity Relay Selection Strategies for Cooperative

Cognitive Relaying Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

18.4 Efficient Relay Selection Strategies for Multi-Relay Cognitive Cooperative Transmissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436 18.4.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436 18.4.2 Three half-duplex cognitive relaying protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436 18.4.3 Asymptotic Analysis of System Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437 18.4.4 Numerical Examples and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444 18.4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

18.5 Distributed Link Scheduling for Single-Relay Secondary Relaying Transmission . . . . 447 18.5.0.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447 18.5.0.2 Distributed Link Selection Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 447

18.5.1 Numerical Examples and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 18.5.1.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

Abstract

In this chapter, we introduce high-efficient and low-complexity scheduling schemes for several spectrum-sharing-based transmission scenarios. The scenarios are categorized into two groups. The first group focuses on the design of cognitive user scheduling for non-cooperative secondary transmissions. For such, besides guaranteeing the reliable operation of primary user, three energyefficient and low-complexity schemes are presented that can achieve exactly the same or even superior transmission robustness over that of existing solutions while consuming much less transmit power. In addition, the average rate and bit error rate (BER) performance of the secondary systems are investigated.