ABSTRACT

The reduction of cancer incidence by dietary supplementation with l-selenomethionine, l-Se-methylselenocysteine, and other methylated selenium compounds and metabolites is believed to be due to the metabolic generation of the monomethylated selenium species methylselenol. Dimethyldiselenide and methylseleninic acid were reduced by glutathione in an in vitro chemiluminescent assay in the presence of lucigenin for the detection of superoxide (O 2·). The methylselenol produced on reduction of dimethyldiselenide and methylseleninic acid was found to be highly catalytic, continuously generating a steady state of O 2·. The O 2· detected by the chemiluminescence generated by methylselenol was fully quenched by superoxide dismutase, causing a complete cessation of chemiluminescence. In contrast, dimethyldisulfide in the presence of glutathione was not catalytic to any measurable extent and did not generate any superoxide. These in vitro results suggest that methylselenol catalysis is possible in vivo, and if metabolism generates sufficient concentrations of methlylselenol from l-selenomethionine or l-Se-methylselenocysteine in vivo, it could change the redox status of cells and oxidatively induce cellular apoptosis.