ABSTRACT

Wireless ad hoc networks have been undergoing a revolution that promises to have a significant impact throughout society, one that could quite possibly dwarf milestones in the information revolution. Unlike traditional fixed infrastructure networks, there is no centralized control over ad hoc networks, which consist of an arbitrary distribution of radios in certain geographical area. Wireless ad hoc networks trigger many challenging research problems, as it intrinsically has many special characteristics and some unavoidable limitations, compared to other wired or wireless network. An important requirement of these networks is that they should be self-organizing, that is, transmission ranges and data paths are dynamically restructured with changing topology. Energy conservation and network performance are probably the most critical issues in wireless ad hoc networks, because wireless devices are usually powered by batteries only and have limited computing capability and memory. Recently, significant research [1-8] has been conducted on designing power-efficient network topology for ad hoc networks. Many proposed methods applied computational geometry technique (specifically, geometrical spanner) to achieve the power efficiency. In this chapter, we will review these approximation algorithms of power spanner for ad hoc networks.