ABSTRACT

Biologists have been widely involved in our understanding of global climate change since the early 1980s. The vast majority of work includes studies that attempt to predict future biological changes in response to future climatic change. These studies range from speculation of range shifts and changes in species interactions based on assumptions that species’ distributions and behaviors are broadly controlled by temperature, to highly detailed bioclimatic mapping models that identify the climatic variables most important in determining species’ ranges and then map future species’ distributions based on expected changes in these variables. Such studies cover a broad spectrum of biological systems, including terrestrial plants (Woodward, 1992; Beerling, 1993), infectious disease (Patz et al., 1996), insects (Rubenstein, 1992), other invertebrates (Bhaud et al., 1995), birds (Root, 1993), freshwater fishes (Scott and Poynter, 1991), algae (Breeman, 1990), marine fishes (Frank et al., 1990), coastal marine communities (Fields et al., 1993; Lubchenco et al., 1993), and native human populations (Langdon, 1995). The vast majority of these studies consider climate change solely in terms of its future signal as predicted by large-scale global circulation models. The significant warming trend seen during the 20th century (Intergovernmental Panel on Climate Change, 2001) and its effects on natural populations is largely ignored by these treatments.