ABSTRACT

It has long been recognized that the more fundamental and mechanistic the information encoded in a medical image, the lower the spatial resolution. Nuclear medicine images, which show tissue function and/or biochemistry, have typical object resolution that exceeds 1 cm. Conversely, the anatomical location of a bone fracture can be resolved to within fractions of a millimeter using X-ray imaging. Magnetic resonance imaging (MRI) of the heart muscle typically achieves a resolution of 8 mm

voxels with an acceptable signal-to-noise ratio (SNR). Via magnetic resonance spectroscopy (MRS), it is currently possible to interrogate the energetics of heart muscle, but, to achieve an acceptable SNR, one must pay a serious penalty in spatial resolution.