ABSTRACT

The recent rise of spatial ecology emphasises the critical importance of the spatial context at which ecological processes take place (Levin, 1992; Tilman and Kareiva, 1997; Clark et al., 1998; Silvertown and Antonovics, 2001). For example, there has been a growing recognition that seed dispersal — one of the most critical processes in plant spatial dynamics (Harper, 1977; Schupp and Fuentes, 1995;

#2

Nathan and Muller-Landau, 2000) — should be incorporated in a spatially realistic manner in models of plant population dynamics, because different distributions of dispersal distances can give rise to entirely different dynamics (Levin et al., 2003). In addition, several features of the environment, such as water availability and soil surface temperature, which are of critical importance to plant recruitment dynamics, typically exhibit pronounced variation in space and time.