ABSTRACT

Waves on the surface of a natural body of open water are the result of disturbing forces that create a deformation, which is restored to equilibrium by, gravitational and surface tension forces. Surface waves are characterized by their height, length, and the water depth over which they are traveling. Figure 36.1 shows a two-dimensional sketch of a sinusoidal surface wave propagating in the

x

-direction. The

wave height

, H, is the vertical distance between its crest and leading trough. Wavelength, L, is the horizontal distance between any two corresponding points on successive waves and wave period is the time required for two successive crests or troughs to pass a given point. The

celerity

of a wave C, is the speed of propagation of the waveform (phase speed), defined as C = L/T. Most ocean waves are progressive; their waveform appears to travel at celerity C relative to a background. Standing waves, their waveforms remains stationary relative to a background, occur from the interaction of progressive waves traveling in opposite directions and are often observed near reflective coastal features. Progressive deep ocean waves are oscillatory meaning that the water particles making up the wave do not exhibit a net motion in the direction of wave propagation. However, waves entering shallow-water begin to show a net displacement of water in the direction of propagation and are classified as translational. The equilibrium position used to reference surface wave motion, (Still Water Level SWL) is z = 0 and the bottom is located at z = –d (Fig. 36.1).