ABSTRACT

Lin An, Yali Jia, and Ruikang K. Wang Division of Biomedical Engineering, School of Medicine, Oregon Health & Science University, 3303 SW Bond Avenue, Portland, Oregon 97239, USA

15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 15.2 Brief Principle of Doppler Optical Coherence Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 15.3 Optical Micro-Angiography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404 15.4 OMAG System Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411 15.5 OMAG Imaging Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 15.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

Optical micro-angiography (OMAG) is a recently developed imaging modality that images the volumetric microcirculations within tissue beds up to 2 mm beneath the surface in vivo. Imaging contrast of blood perfusion in OMAG is based on endogenous light scattering from moving blood cells within biological tissue; thus, no exogenous contrast agents are necessary for imaging. The development of OMAG has its origin in Fourier domain optical coherence tomography (OCT). In this chapter, we will first briefly review the perspectives of OCT imaging of blood flow and summarize its advantages and disadvantages in imaging microcirculations within tissue beds in vivo. We will then introduce OMAG and its applications in imaging dynamic blood flow, down to capillary level resolution, within the cerebral cortex in small animal models, and within the retina in humans.

Key words: Optical micro-angiography, Doppler optical coherence tomography, blood perfusion, cerebral blood flow, functional imaging