ABSTRACT

Irina V. Larina and Mary E. Dickinson Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA 77030

Kirill V. Larin Biomedical Engineering Program, University of Houston, N207 Engineering Building 1, Houston, TX 77204, USA

22.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575 22.2 Imaging Vascular Development Using Confocal Microscopy of Vital Fluorescent Markers . 576 22.3 Live Imaging of Mammalian Embryos with OCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580 22.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587

Different dynamic aspects of early mammalian cardiovascular development can only be addressed by live embryonic imaging. Optical imaging has a clear advantage of high resolution compared to the other imaging techniques (such as micro-MRI and ultrasound bio-microscopy), while the imaging depth is acceptable due to small sizes of early embryos. Some optical imaging techniques are particularly well-suited for early developmental studies and have been used to answer many interesting questions about the mechanisms of invertebrate and vertebrate ontogeny. In this chapter we specifically focused on two approaches, confocal microscopy of vital fluorescent reporters and optical coherence tomography, discussing their advantages and limitations for live dynamic imaging of cultured mammalian embryos.