ABSTRACT

A primary goal of neuroscience is to identify the neural computations that underlie behavior. In a recent commentary, Carandini stated that “to understand neural computations, we must record from a myriad of neurons in multiple brain regions (Carandini, 2012),” and in a similar vein, György Buzsáki noted, “that transiently active ensembles of neurons, known as ‘cell assemblies,’ underlie numerous operations of the brain, from encoding memories to reasoning (Buzsaki, 2010).” These two statements illustrate the approach we have undertaken in obtaining ensembles of

13.1 Introduction .................................................................................................. 321 13.2 Generalities of Ingestive Behavior ................................................................ 323

13.2.1 Oscillations and Chunking Information ........................................... 323 13.2.2 Oromotor and Preoromotor Substrates of Ingestive Behavior .......... 324 13.2.3 Subcortical Inputs to the CPG for Licking ....................................... 326 13.2.4 Cortical Modulation of Voluntary Licking ....................................... 327 13.2.5 Taste-Reward Pathway ..................................................................... 328

13.3 Spike Timing and Gustatory Processing ...................................................... 328 13.3.1 Go/No-Go Taste-Discrimination Task ............................................. 330 13.3.2 Rhythmic Licking as a Global Internal “Clock” That Entrains

the Taste-Reward Circuit ................................................................. 330 13.3.3 Rhythmic Licking Coordinates Spike Timing between Brain

Regions ............................................................................................. 332 13.3.4 Spike Timing Precision (and Reliability) Improves Taste

Discrimination upon Learning ......................................................... 334 13.4 Future Issues ................................................................................................. 338 Acknowledgments .................................................................................................. 339 References .............................................................................................................. 339

neurons across four different brain areas to obtain the neural events associated with animal’s learning to distinguish among tastants or, in a broader sense, to associate neural activity with behavior.