ABSTRACT

Institute for Biological and Medical Imaging and Chair for Biological Imaging, Helmholtz Zentrum

M

¨

unchen and Technische Unversit

¨

at M

¨

unchen, Ingolst

¨

adter Landstr. 1, Neuherberg, Germany

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

12.2 Optoacoustic Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

12.3 Optoacoustic Wave Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

12.4 Instrumentation and Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

12.5 Image Reconstruction and Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

12.6 Sources of Contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

12.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470

Key words: molecular imaging, optical imaging, optoacoustic imaging, photoacoustic imaging

Optical imaging at tissue depths of several millimeters to centimeters becomes feasible by operat-

ing in the far-red and near-infrared (NIR) wavelength range, i.e., 630 nm-900 nm. In the NIR, light

absorption by tissue is much lower than in the visible spectrum, as evident by the red appearance of

light seen penetrating tissue after illumination with a white light source [1]. While simple tissue epi-

illumination and transillumination results in an image blurred in appearance due to strong photon

scattering in tissue, optical tomography methods have demonstrated the abilility to quantitatively

resolve fluorescent molecules delivered in vivo in tissues [2, 3] or intrinsic tissue chromophores,

such as hemoglobin concentration [4]. However, optical imaging, even in tomographic mode, is

limited by the scattering of light by tissue cellular interfaces and organelles, resulting in reduced

scattering coefficients of tissue in the range of µ

∼ 10 cm

in the NIR [5]. As a result of photon

scattering, light coming from a collimated laser beam incident on tissue becomes completely diffu-

sive within 1 mm of photon propagation. Tomographic methods only partially resolve the loss in

imaging resolution that derives as a result of photon diffusion in tissue. For example, fluorescence

molecular tomography (FMT), a modality based on detection at several projections of diffuse light

that has propagated several millimeters to centimeters in tissues, achieves spatial resolutions in the

order of 1 mm at depths of approximately 1-2 cm.