ABSTRACT

Electromagnetic fields are capable of eliciting in vivo and in vitro effects in many biological systems [1]. Increasing attention is being directed towards bioelectromagnetic stimulation of living cultures for biotechnology and bioenergy applications using the low frequency electromagnetic fields (EMF). A number of bioprocesses could be successfully integrated with electromagnetic or electrochemical stimulation if the cultivation conditions are properly engineered using specialized reactors viz. electrolytic bioreactors, electro-bioreactors and bioelectro-reactors [2]. Most recently, a strong initiative in bioenergy research has been taken up to investigate methods for enhancing productivity and metabolic processes for biomass production and biorefining of biomass for production of biofuels, energy and other added value products. Currently, microalgae are considered to be the most promising candidates for biomass production because of their ability to grow fast, produce large quantities of lipids, carbohydrates and proteins, thrive in poor quality waters, sequester and recycle carbon dioxide from industrial flue gases and remove pollutants from industrial, agricultural and municipal wastewaters. Microalgae are novel feedstocks

for renewable biomass production that is capable of meeting the global demand for transportation fuels because the oil productivity of many strains of microalgae greatly exceeds that of the most productive oil crops such as oil palms and soybean [3]. Although biomass production may be most effectively performed by large-scale algae cultivation, yeast and bacteria are the most common groups of organisms used in bioprocessing and conversion technologies like fermentation, composting, anaerobic digestion and bioremediation. Considering the current importance of waste management and recycling in conserving natural resources, bioenergetic stimulation technologies may be used as a potential tool for bioremediation by stimulating the uptake rates of various polluting components found in the waste streams by microbes.