ABSTRACT

The most widely accepted collection of evolutionary theories is the neoDarwinian paradigm. These arguments assert that the vast majority of the history of life can be fully accounted for by physical processes operating on and within populations and species (Hoffman 1989, p 39). These processes are reproduction, mutation, competition, and selection. Reproduction is an obvious property of extant species. Further, species have such great reproductive potential that their population size would increase at an exponential rate if all individuals of the species were to reproduce successfully (Malthus 1826, Mayr 1982, p 479). Reproduction is accomplished through the transfer of an individual’s genetic program (either asexually or sexually) to progeny. Mutation, in a positively entropic system, is guaranteed, in that replication errors during information transfer will necessarily occur. Competition is a consequence of expanding populations in a finite resource space. Selection is the inevitable result of competitive replication as species fill the available space. Evolution becomes the inescapable result of interacting basic physical statistical processes (Huxley 1963, Wooldridge 1968, Atmar 1979).