ABSTRACT

I. INTRODUCTION As micro-and nano-technology continue to develop for both capillaries and chips, an important new application in separation science is in the development of sensors. Separation-based sensors, in which sample is separated and analyzed in a continuous fashion, can be used to rapidly obtain dynamic information. Offering an advantage over traditional sensors, separation-based sensors reduce interference by separating analytes from their complex sample matrix. Furthermore, identification of unexpected analytes can be determined since these sensors are not analyte specific. Electrophoresis is an attractive method for separation-based sensors because of its high efficiency, fast separation time, small sample requirements, and widespread application to biological analysis [1]. This chapter presents an overview of the application of capillary electrophoresis (CE) and chip electrophoresis to single cell analysis aimed at developing separation-based sensors. Herein, work from our laboratory will be the primary focus, in particular, the development of electrochemical detection for CE, sampling and analyzing whole cells and release from cells, and the development of continuous analysis techniques for future application as separationbased sensors.