ABSTRACT

A plethora of mutually beneficial information collaboration opportunities exist when organizations and individuals share information. Some examples of such collaborations include (1) hospitals sharing information about patients with a rare disease in order to develop better treatments; (2) suppliers and retailers sharing their holding costs, inventory on hand, and other supply-chain information in order to reduce their costs; and (3) finding interorganization purchase patterns by sharing customer records to perform collaborative data mining. Clearly, there are many potential benefits, both monetary and societal, for such collaborations, however, one significant drawback is concerns about confidentiality and privacy that are associated with sharing information. Returning to the examples above, sensitivity concerns include (1) patients’ information is private and theremay be lawspreventing such sharing of information (e.g., in theUnited States,HIPAArestricts the sharing of medical information); (2) the supplier and retailer may be concerned that their cost information could be used against them in a future interaction; and (3) sharing customers’ information may violate the customers’ privacy. Thus, while significant benefit may result from such collaborations, these collaborations may not occur due to privacy and confidentiality concerns. Secure protocols (also called privacy-preserving or confidentiality-preserving protocols) are cryp-

tographic techniques that obtain the result of information collaboration while preserving privacy and confidentiality. More specifically, secure protocols are cryptographic techniques for computing functions (i.e., collaboration outcomes) over distributed inputs while revealing only the result of

the function. Thus, secure protocols are a way to have the best of both worlds-we can obtain the benefit of collaboration without the drawback of revealing too much information. While this may seem like an intractable goal for many problems, there have been many general results which state, under various assumptions, that any function computable in polynomial time can also be computed securely with polynomial communication and polynomial computation. The problem of computing any function in a secure manner is called secure multiparty computation (SMC). This chapter provides a description of techniques for building secure protocols from an applied

standpoint. That is, this chapter is not an exhaustive description of SMC techniques, but rather this chapter describes a few key building blocks that facilitate the creation of several secure protocols. For the reader that is interested in a formal description of cryptographic primitives and SMC we refer you to [15,16]. The rest of this chapter is organized as follows: in Section 14.2 secure protocols are defined more formally. Section 14.3 presents a survey of known results for secure protocols. Section 14.4 describes practicality problems for the general SMC results along with methods that help overcome these problems. In Sections 14.5 through14.7 several specific techniques for two-party secure protocols are described, and in Section 14.8 we summarize this chapter.