Soil organic matter (SOM) is the primary determinant of soil functionality. Soil organic carbon (SOC) accounts for 50% of the SOM content, accompanied by nitrogen, phosphorus, and a range of macro and micro elements. As a dynamic component, SOM is a source of numerous ecosystem services critical to human well-being and nature conservancy. Important among these goods and services generated by SOM include moderation of climate as a source or sink of atmospheric CO2 and other greenhouse gases, storage and purification of water, a source of energy and habitat for biota (macro, meso, and micro-organisms), a medium for plant growth, cycling of elements (N, P, S, etc.), and generation of net primary productivity (NPP). The quality and quantity of NPP has direct impacts on the food and nutritional security of the growing and increasingly affluent human population.

Soils of agroecosystems are depleted of their SOC reserves in comparison with those of natural ecosystems. The magnitude of depletion depends on land use and the type and severity of degradation. Soils prone to accelerated erosion can be strongly depleted of their SOC reserves, especially those in the surface layer. Therefore, conservation through restorative land use and adoption of recommended management practices to create a positive soil-ecosystem carbon budget can increase carbon stock and soil health.

This volume of Advances in Soil Sciences aims to accomplish the following:

  • Present impacts of land use and soil management on SOC dynamics
  • Discuss effects of SOC levels on agronomic productivity and use efficiency of inputs
  • Detail potential of soil management on the rate and cumulative amount of carbon sequestration in relation to land use and soil/crop management
  • Deliberate the cause-effect relationship between SOC content and provisioning of some ecosystem services
  • Relate soil organic carbon stock to soil properties and processes
  • Establish the relationship between soil organic carbon stock with land and climate
  • Identify controls of making soil organic carbon stock as a source or sink of CO2
  • Connect soil organic carbon and carbon sequestration for climate mitigation and adaptation

chapter 1|18 pages

Enhancing Fertilizer Use Efficiency by Managing Soil Health

Emerging Trends

chapter 2|46 pages

Conservation Agriculture

Carbon and Conservation Centered Foundation for Sustainable Production

chapter 9|32 pages

Soil Organic Matter

Bioavailability and Biofortification of Essential Micronutrients

chapter 14|26 pages

No-Till Farming in the Maghreb Region

Enhancing Agricultural Productivity and Sequestrating Carbon in Soils

chapter 15|42 pages

No-Till Farming for Managing Soil Organic Matter in Semiarid, Temperate Regions

Synergies, Tradeoffs, and Knowledge Gaps