The first book devoted exclusively to quantitative graph theory, Quantitative Graph Theory: Mathematical Foundations and Applications presents and demonstrates existing and novel methods for analyzing graphs quantitatively. Incorporating interdisciplinary knowledge from graph theory, information theory, measurement theory, and statistical technique

chapter 1|34 pages

What Is Quantitative Graph Theory?

ByMatthias Dehmer, Veronika Kraus, Frank Emmert-Streib, Stefan Pickl

chapter 2|46 pages

Localization of Graph Topological Indices via Majorization Technique

ByMonica Bianchi, Alessandra Cornaro, José Luis Palacios, Anna Torriero

chapter 3|30 pages

Wiener Index of Hexagonal Chains with Segments of Equal Length

ByAndrey A. Dobrynin

chapter 4|30 pages

Metric-Extremal Graphs

ByIvan Gutman, Boris Furtula

chapter 5|40 pages

Quantitative Methods for Nowhere-Zero Flows and Edge Colorings

ByMartin Kochol

chapter 6|52 pages

Width-Measures for Directed Graphs and Algorithmic Applications

ByStephan Kreutzer, Sebastian Ordyniak

chapter 7|26 pages

Betweenness Centrality in Graphs

BySilvia Gago, Jana Coronicˇová Hurajová, Tomáš Madaras

chapter 8|20 pages

On a Variant Szeged and PI Indices of Thorn Graphs

ByMojgan Mogharrab, Reza Sharafdini

chapter 9|24 pages

Wiener Index of Line Graphs

ByMartin Knor, Riste Škrekovski

chapter 10|22 pages

Single-Graph Support Measures

ByToon Calders, Jan Ramon, Dries Van Dyck

chapter 11|30 pages

Network Sampling Algorithms and Applications

ByMichael Drew LaMar and Rex K. Kincaid

chapter 12|32 pages

Discrimination of Image Textures Using Graph Indices

ByMartin Welk

chapter 13|20 pages

Network Analysis Applied to the Political Networks of Mexico

ByPhilip A. Sinclair

chapter 15|46 pages

Graph Kernels in Chemoinformatics

ByBenoît Gaüzère, Luc Brun, Didier Villemin

chapter 16|24 pages

Chemical Compound Complexity in Biological Pathways

ByAtsuko Yamaguchi, Kiyoko F. Aoki-Kinoshita