This introductory text acts as a singular resource for undergraduates learning the fundamental principles and applications of integration theory.Chapters discuss: function spaces and functionals, extension of Daniell spaces, measures of Hausdorff spaces, spaces of measures, elements of the theory of real functions on R.

chapter 1|8 pages


chapter 2|39 pages

Function spaces and functionals

chapter 3|51 pages

Extension of Daniell spaces

chapter 4|57 pages

Measure and integral

chapter 5|36 pages

Measures on Hausdorff spaces

chapter 6|25 pages


chapter 7|19 pages

Vector lattices, Lp-spaces

chapter 8|22 pages

Spaces of measures