Skip to main content
Taylor & Francis Group Logo
Advanced Search

Click here to search books using title name,author name and keywords.

  • Login
  • Hi, User  
    • Your Account
    • Logout
Advanced Search

Click here to search books using title name,author name and keywords.

Breadcrumbs Section. Click here to navigate to respective pages.

Book

No Image Available

Book

Time Series

DOI link for Time Series

Time Series book

Modeling, Computation, and Inference, Second Edition

Time Series

DOI link for Time Series

Time Series book

Modeling, Computation, and Inference, Second Edition
ByRaquel Prado, Marco A. R. Ferreira, Mike West
Edition 2nd Edition
First Published 2021
eBook Published 27 July 2021
Pub. Location New York
Imprint Chapman and Hall/CRC
Pages 472
eBook ISBN 9781351259422
Subjects Mathematics & Statistics
Share
Share

Get Citation

Prado, R., West, M., & Ferreira, M.A.R. (2021). Time Series: Modeling, Computation, and Inference, Second Edition (2nd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9781351259422

ABSTRACT

Focusing on Bayesian approaches and computations using analytic and simulation-based methods for inference, Time Series: Modeling, Computation, and Inference, Second Edition integrates mainstream approaches for time series modeling with significant recent developments in methodology and applications of time series analysis. It encompasses a graduate-level account of Bayesian time series modeling, analysis and forecasting, a broad range of references to state-of-the-art approaches to univariate and multivariate time series analysis, and contacts research frontiers in multivariate time series modeling and forecasting.

It presents overviews of several classes of models and related methodology for inference, statistical computation for model fitting and assessment, and forecasting. It explores the connections between time- and frequency-domain approaches and develop various models and analyses using Bayesian formulations and computation, including use of computations based on Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) methods. It illustrates the models and methods with examples and case studies from a variety of fields, including signal processing, biomedicine, environmental science, and finance.

Along with core models and methods, the book represents state-of-the art approaches to analysis and forecasting in challenging time series problems. It also demonstrates the growth of time series analysis into new application areas in recent years, and contacts recent and relevant modeling developments and research challenges.

New in the second edition:

  • Expanded on aspects of core model theory and methodology.
  • Multiple new examples and exercises.
  • Detailed development of dynamic factor models.
  • Updated discussion and connections with recent and current research frontiers.

TABLE OF CONTENTS
1. Notation, definitions, and basic inference
2. Traditional time domain models
3. The frequency domain
4. Dynamic linear models
5. State-space TVAR models
6. SMC methods for state-space models
7. Mixture models in time series
8. Topics and examples in multiple time series
9. Vector AR and ARMA models
10. General classes of multivariate dynamic models
11. Latent factor models
T&F logoTaylor & Francis Group logo
  • Policies
    • Privacy Policy
    • Terms & Conditions
    • Cookie Policy
    • Privacy Policy
    • Terms & Conditions
    • Cookie Policy
  • Journals
    • Taylor & Francis Online
    • CogentOA
    • Taylor & Francis Online
    • CogentOA
  • Corporate
    • Taylor & Francis Group
    • Taylor & Francis Group
    • Taylor & Francis Group
    • Taylor & Francis Group
  • Help & Contact
    • Students/Researchers
    • Librarians/Institutions
    • Students/Researchers
    • Librarians/Institutions
  • Connect with us

Connect with us

Registered in England & Wales No. 3099067
5 Howick Place | London | SW1P 1WG © 2021 Informa UK Limited