Methods Used to Solve Discrete Math ProblemsInteresting examples highlight the interdisciplinary nature of this areaPearls of Discrete Mathematics presents methods for solving counting problems and other types of problems that involve discrete structures. Through intriguing examples, problems, theorems, and proofs, the book illustrates the relation

part 1|2 pages

Part I: Counting: Basic

chapter 1|2 pages

Subsets of a Set

chapter 2|6 pages

Pascal’s Triangle

chapter 3|8 pages

Binomial Coefficient Identities

part 2|2 pages

Part II: Counting: Intermediate

chapter 4|4 pages

Finding a Polynomial

chapter 5|2 pages

The Upward-Extended Pascal’s Triangle

chapter 6|10 pages

Recurrence Relations and Fibonacci Numbers

part 3|2 pages

Part III: Counting: Advanced

chapter 7|10 pages

Generating Functions and Making Change

chapter 8|4 pages

Integer Triangles

chapter 9|12 pages

Rook Paths and Queen Paths

part 4|2 pages

Part IV: Discrete Probability

chapter 10|14 pages

Probability Spaces and Distributions

chapter 11|10 pages

Markov Chains

chapter 12|4 pages

Random Tournaments

part 5|2 pages

Part V: Number Theory

chapter 14|6 pages

Covering Systems

chapter 15|12 pages

Partitions of an Integer

part 6|2 pages

Part VI: Information Theory

chapter 16|10 pages

What Is Surprise?

chapter 17|6 pages

A Coin-Tossing Game

chapter 18|14 pages

Shannon’s Theorems

part 7|2 pages

Part VII: Games

chapter 19|10 pages

A Little Graph Theory Background

chapter 20|8 pages

The Ramsey Game

chapter 21|8 pages

Tic-Tac-Toe and Animal Games

part 8|2 pages

Part VIII: Algorithms

chapter 22|4 pages


chapter 23|6 pages

Listing Permutations and Combinations

chapter 24|8 pages

Sudoku Solving and Polycube Packing