Skip to main content
Taylor & Francis Group Logo
    Advanced Search

    Click here to search products using title name,author name and keywords.

    • Login
    • Hi, User  
      • Your Account
      • Logout
      Advanced Search

      Click here to search products using title name,author name and keywords.

      Breadcrumbs Section. Click here to navigate to respective pages.

      Book

      Lie Algebras in Particle Physics
      loading

      Book

      Lie Algebras in Particle Physics

      DOI link for Lie Algebras in Particle Physics

      Lie Algebras in Particle Physics book

      From Isospin to Unified Theories

      Lie Algebras in Particle Physics

      DOI link for Lie Algebras in Particle Physics

      Lie Algebras in Particle Physics book

      From Isospin to Unified Theories
      ByHoward Georgi
      Edition 1st Edition
      First Published 1999
      eBook Published 17 June 2019
      Pub. Location Boca Raton
      Imprint CRC Press
      DOI https://doi.org/10.1201/9780429499210
      Pages 340
      eBook ISBN 9780429499210
      Subjects Physical Sciences
      OA Funder SCOAP3
      Share
      Share

      Get Citation

      Georgi, H. (1999). Lie Algebras in Particle Physics: From Isospin to Unified Theories (1st ed.). CRC Press. https://doi.org/10.1201/9780429499210

      ABSTRACT

      In this book, the author convinces that Sir Arthur Stanley Eddington had things a little bit wrong, as least as far as physics is concerned. He explores the theory of groups and Lie algebras and their representations to use group representations as labor-saving tools.

      TABLE OF CONTENTS

      chapter |1 pages

      Why Group Theory?

      Size: 0.21 MB

      chapter Chapter 1|41 pages

      Finite Groups

      Size: 0.89 MB

      chapter Chapter 2|13 pages

      Lie Groups

      Size: 0.46 MB

      chapter Chapter 3|12 pages

      SU(2)

      Size: 0.47 MB

      chapter Chapter 4|11 pages

      Tensor Operators

      Size: 0.47 MB

      chapter Chapter 5|11 pages

      Isospin

      Size: 0.47 MB

      chapter Chapter 6|8 pages

      Roots and Weights

      Size: 0.43 MB

      chapter Chapter 7|5 pages

      SU(3)

      Size: 0.36 MB

      chapter Chapter 8|22 pages

      Simple Roots

      Size: 0.55 MB

      chapter Chapter 9|13 pages

      More SU(3)

      Size: 0.44 MB

      chapter Chapter 10|28 pages

      Tensor Methods

      Size: 0.73 MB

      chapter Chapter 11|12 pages

      Hypercharge and Strangeness

      Size: 0.46 MB

      chapter Chapter 12|9 pages

      Young Tableaux

      Size: 0.39 MB

      chapter Chapter 13|11 pages

      SU(N)

      Size: 0.45 MB

      chapter Chapter 14|7 pages

      3-D Harmonic Oscillator

      Size: 0.37 MB

      chapter Chapter 15|9 pages

      SU(6) and the Quark Model

      Size: 0.46 MB

      chapter Chapter 16|7 pages

      Color

      Size: 0.39 MB

      chapter Chapter 17|4 pages

      Constituent Quarks

      Size: 0.35 MB

      chapter Chapter 18|12 pages

      Unified Theories and SU(5)

      Size: 0.50 MB

      chapter Chapter 19|7 pages

      The Classical Groups

      Size: 0.37 MB

      chapter Chapter 20|11 pages

      The Classification Theorem

      Size: 0.45 MB

      chapter Chapter 21|10 pages

      SO(2n + 1) and Spinors

      Size: 0.45 MB

      chapter Chapter 22|5 pages

      SO (2n + 2) Spinors

      Size: 0.34 MB

      chapter Chapter 23|12 pages

      SU(n) ⊂ SO(2n)

      Size: 0.51 MB

      chapter Chapter 24|9 pages

      SO(10)

      Size: 0.44 MB

      chapter Chapter 25|6 pages

      Automorphisms

      Size: 0.35 MB

      chapter Chapter 26|5 pages

      Sp(2n)

      Size: 0.37 MB

      chapter Chapter 27|9 pages

      Odds and Ends

      Size: 0.44 MB
      T&F logoTaylor & Francis Group logo
      • Policies
        • Privacy Policy
        • Terms & Conditions
        • Cookie Policy
        • Privacy Policy
        • Terms & Conditions
        • Cookie Policy
      • Journals
        • Taylor & Francis Online
        • CogentOA
        • Taylor & Francis Online
        • CogentOA
      • Corporate
        • Taylor & Francis Group
        • Taylor & Francis Group
        • Taylor & Francis Group
        • Taylor & Francis Group
      • Help & Contact
        • Students/Researchers
        • Librarians/Institutions
        • Students/Researchers
        • Librarians/Institutions
      • Connect with us

      Connect with us

      Registered in England & Wales No. 3099067
      5 Howick Place | London | SW1P 1WG © 2022 Informa UK Limited