ABSTRACT

The existence and use of batteries is thought to have roots in prehistoric times, whereby, through archeological discoveries, it was discovered that prehistoric people had created an electrochemical cell that would qualify, under today’s de nition, as a battery. A curiosity found in Baghdad in 1932 was probably representative of battery technology dating as far back as 2500 years.1 Such a primitive

served as an electrolyte, escaped preservation. Notwithstanding its simplicity, such a cell would have provided current to permit primitive jewelers to electroplate precious metals and make copper shine either like gold or as silver.1 Although such archeological evidence provides us with some glimpse into the far past, the history of modern-day battery development begins in the 1780s with the discovery of “animal electricity” by Luigi Galvani (1737-1798), which he published in 1791. This Italian anatomist and physician observed that muscles of a frog’s leg would contract when jolted with a static electrical spark delivered from a Leyden jar. In further experiments in bioelectrogenesis, as the knee-jerk reaction came to be called, Galvani noticed that the frog’s leg would also react to two different metals being applied to the muscle.1 This behavior was also observed when a dead frog’s leg was used in the experiment. From these series of experiments, Galvani deduced that the muscle was producing electricity. It is therefore not surprising that his name has since become intimately associated with electricity to the extent that the process of producing electricity by chemical reaction is termed galvanism.1