Breadcrumbs Section. Click here to navigate to respective pages.
Chapter

Chapter
Dynamically constraining connectionist networks to produce distributed, orthogonal representations to reduce catastrophic interference
DOI link for Dynamically constraining connectionist networks to produce distributed, orthogonal representations to reduce catastrophic interference
Dynamically constraining connectionist networks to produce distributed, orthogonal representations to reduce catastrophic interference book
Dynamically constraining connectionist networks to produce distributed, orthogonal representations to reduce catastrophic interference
DOI link for Dynamically constraining connectionist networks to produce distributed, orthogonal representations to reduce catastrophic interference
Dynamically constraining connectionist networks to produce distributed, orthogonal representations to reduce catastrophic interference book
Click here to navigate to parent product.
ABSTRACT
It is well known that when a connectionist network is trained on one set of patterns and then attempts to add new patterns to its repertoire, catastrophic interference may result. The use of sparse, orthogonal hidden-layer representations has been shown to reduce catastrophic interference. The author demonstrates that the use of sparse representations may, in certain cases, actually result in worse performance on catastrophic interference. This paper argues for the necessity of maintaining hidden-layer representations that are both as highly distributed and as highly orthogonal as possible. The author presents a learning algorithm, called context-biasing, that dynamically solves the problem of constraining hidden-layer representations to simultaneously produce good orthogonality and distributedness. On the data tested for this study, context-biasing is shown to reduce catastrophic interference by more than 50% compared to standard backpropagation.