ABSTRACT

Maps of groundwater levels are used to estimate groundwater flow direction and velocity, to assess groundwater vulnerability, to locate landfills and wastewater disposal sites, and as input to hydrologic and pollutant transport models. Because groundwater is hidden from view beneath the land surface, groundwater can only be directly observed through monitoring wells. However, because these observations are limited to specific points, mapping groundwater levels requires hydrogeologically appropriate techniques to generalize the point measurements. Rules or models for spatially and temporally generalizing monitoring (sample) data across the groundwater system are inherent and essential to hydrogeologic science. Our understanding of ground water is the product of a long history of hypothesis and model development, testing, and refinement.[1]

The position of the water table is the product of a wide range of static and dynamic environmental conditions and processes affecting the rate at which water enters and leaves the saturated zone of the aquifer. The water table rises if the rate of water added (recharge) exceeds the rate of water leaving (discharge); conversely, the water table falls if discharge exceeds recharge. The water-table surface is therefore not static, nor flat (as the name implies), but responsive to climatic, vegetative, geomorphic, and geologic conditions.