ABSTRACT

Summary Accompanying the clinical introduction of tumor vaccines has been an increasing awareness for the need of suitable preclinical mouse tumor model systems to guide some of the potentially critical analogous issues and concerns that arise in the design and implementation of clinical protocols. Due to the increased ability to manipulate the murine germline, the mouse has become a primary organism in which to investigate some of the concepts and mechanisms involved in tumor immunology. Several murine homologs of human tumor antigens have been identified, but there is a noticeable lack of comparable naturally processed murine T-cell defined tumor antigens for a major class of currently defined human tumor antigens, namely the cancer/testis (CT) antigens. For the past 50 years, carcinogeninduced or spontaneous arising tumors in inbred mice were the major source for the identification of murine tumor antigens. More recently, advances in genetic engineering technologies have opened up new possibilities to study and discover new tumor antigens using transgenic and/or knockout mouse models with translational potential for the human system. This chapter focuses on preclinical murine tumor models involving murine antigen homologs of human tumor antigens, and the relevancy of their use in the development of cancer vaccines and strategies for immunotherapy of cancer.